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ABSTRACT-A semi-implicit time integration algorithm 
developed earlier for a barotropic model resulted in an  
appreciable economy of computing time. An extension of 
this method to baroclinic models is formulated, including a 
description of the various steps in the calculations. In  the 
proposed scheme, the temperature is separated into a basic 
part dependent only on the vertical coordinate and a 
corresponding perturbation part. All terms involving the 
perturbation temperature are calculated from current 
values of the variables, while a centered finite-difference 
time average is applied to the horizontal pressure gradient, 
the divergence, and the vertical motion in the remaining 

terms. This method gives computationally stable integra- 
tions with relatively large time steps. 

The model used to test the semi-implicit scheme does 
not include topography, precipitation, diabatic heating, 
and other important physical processes. Five-day hemis- 
pheric integrations from real data with time steps of 60 
and 30 min show differences of the order of 3 m. These 
errors are insignificant when compared to other sources 
of error normally present in most numerical models. Pres- 
ently, this model produces relatively good short-range 
predictions, and this is a strong factor in favor of inserting 
the major physical processes as soon as possible. 

1. INTRODUCTION 

Modelers use a wide variety of numerical time inte- 
gration schemes for their experiments. For instance, 
Smagorinsky et al. (1965) use centered differences, 
Kasahara and Washington (1967) apply a modified 
version of the Lax-Wendroff scheme, and Mintz (1965) 
uses the backward differencing scheme of Ma€suno. 
This seems surprising when one considers that the various 
time integration algorithms differ so much from each 
other that a simple investigation should reveal which 
one of these will provide the best performance. In  fact, 
some ‘ authors have performed comparisons involving 
many frequently used schemes. As examples, we find an 
investigation of 13 different computational methods per- 
formed by Young (1968). Also, Lilly (1965) and Eurihara 
(1965) studied the properties of a number of time integra- 
tion techniques. The accumulation of analytic and experi- 
mental evidence did not succeed in reducing the number 
of integration algorithms considered by atmospheric 
scientists. 

The following sections of this paper will not alleviate 
the problem since they introduce and describe a semi- 
implicit method of integration, thereby adding another 
element to  an already voluminous assortment of tech- 
niques. Fortunately, this method has a significant advan- 
tage. It operates with a time step of 60 min in a model 
where a short 10-min time step is normally required. 
The truncation errors associated with the large time 
step appear to be insignificantly small so that there is no 
penalization for the substantial increase in computa- 
ti on a1 efficiency . 

Until recently, very little attention has been paid, to 
the implicit and semi-implicit methods, by the atmos- 
pheric scientists outside the U.S.S.R. Thompson (1961) 
devotes only a few lines to  this subject. In  the U.S.S.R., 
Marchuk (1965) investigated this field extensively and 
developed a number of highly efficient and practical 
algorithms. Subsequently, Kurihara (1965) and Holton 
(1967) applied the implicit method to linear equations. 
Nonlinear barotropic integrations were performed later 
with a spectral model by Robert (1969) and with gridpoint 
models by Kwizak and Robert (1971) and McPherson 
(1971). The purpose of this paper is to report on experi- 
ments performed with a semi-implicit time integration 
algorithm in a baroclinic model that d l  soon be used in 
Canada for short-range weather forecasting. 

2. THE MODELING EQUATIONS 

In principle, the model described by Shuman and 
Hovermale (1968) was adopted for the experiments with 
the semi-implicit algorithm. ‘1 his is the model currently 
used at  the National Meteorological Center (NMC), 
Suitland, Md., for the procluction of weather forecasts 
on a routine basis. As suggested later by Shuman and 
Stackpole (1969), the original formulation was changed 
slightly to use the invariant form of the meteorological 
equations. 

In the experiments with the barotropic version, Kwizak 
and Robert (1971) used the same space differences as 
in the NMC model. A few slight modifications, intro- 
duced to reduce truncation errors in the additional 
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operations required in the integration scheme, are 
described by the authors in their paper. 

Noticeable changes were macle in the formulatrion and 
in the finite differences related to  the vertical coordinate 
in the baroclinic version. A derivation of the model mill 
be given to describe these moclifictitions. We will use the 
hydrostatic approximation and introduce a vertical coor- 
dinate u as follows: 

where the subscript, s, represents values at  the lower 
boundary, and us is a constant used for scaling u. The 
equations will then take the form 

dv %+u (j+z 

at v *  ( P S V ) ,  

a; 
Ps z = - v  p , (V-V>,  

and 

where the symbol (-) represents the vertical average 

and 
. a  a 
ax ay ~ = a  -+j -. 

The equations given above are valid in spherical polar 
coordinates where x represents the distance measured 
eastward along latitude circles and y represents the dis- 
tance measured northward along meridians. The variables 
u, v, and ci are the components of the velocity vector in 
the curvilinear coordinates 2, y? and 8. Some small terms 
involving the vertical component of the wind were ne- 
glect'ed in the equation of motion and in the equation of 
continuity. The geopotential, the pressure, and the tem- 
perature are represented by 4, p ,  and T ,  respectively. Also, 
f is the Coriolis parameter, a is the radius of the earth, cp is 
the latitude, R is the gas constant for dry air, c, is the heat 
capacity at  constant pressure, H is the diabatic heating 
rate, and F, and F, represent the viscous dissipation 
terms. 

The variables are defined a t  the points of a rectangular 
grid in a conformal projection. Also, a set of dimension- 
less variables will be introduced into the modeling equa- 
tions for the numerical integrations. The only virtue of 
the dimensionless system resides in the fact that it simpli- 
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fies the presentation of the semi-implicit treatment of the 
equations. This is the reason why it is used here. Now 

I n  these equations, m represents the map scale factor, 
and d is the length used for scaling. The constants Au and 
At will also be used for the same purpose, giving 

and 

U 
z=-1 

Au 

t 
At 

u A t  u= --f 
md 

7 z - 1  

vAt , V=- 
md 

At 
Au 

q5At2 a=--, 
d2 

w=-1 

R 
C P  

K=-? 

(13) 

(14) 

(23) 
1 
2 K=- m2( U2+ V 2 )  , 

av au 
a y  Q=fAt+m2 

After these substitutions are made, the original 
equations will take the following form: 

(26) 
aK au a* e all, 
a x  a z  a x  p , a x  &V+-+W -=---- -+F,, a u  _ _  

ar 
a V , Q U + Z + w  aK a v  az=-aY-p, a@ e aP,  ay ar -+ Fy, (27) 

g=h+d [ g - m 2  (-+-)+A-"]? a 6  aV (28) dr ax aY 



resulting equations appear as follows: 

au ap 
ar ax 7.1 , -+ -= 

and 

Note that the map scale factor appears in the modified 
horizontal wind components defined in eq (14) and 
(15). Also, eq (26) and (27) appear in their invariant form. 
With these changes, there is no explicit reference to terms 
containing derivatives of the map scale factor. 

Equations (26)-(31) are valid in any Cartesian system, 
so there is an advantage in using the coordinates defined 
by the grid. This will be done in the numerical inte- 
grations, and in the calculations, U and V will represent 
the components of the horizontal wind vector along the 
axes of the grid network. 

(44) 

and 
aw g + m ’ ( a x + g ) = - A ,  au a 

(47) 3. MODIFICATIONS FOR THE IMPLICIT SCHEME 

A variable, e*,  dependent only on the vertical coordin- 
ate and the two following variables, 

It is important to  note that the above tre,nsformations 
mere made without any approximations. The quantities 
p1, rz, and r3 will be evaluated first, and the implicit method 
will be applied to  the remaining calculations. 

P=@ + I3*lnp, 
and 

Ili=w-Zm2(-+-)-ZA” ai7 aB 
ax ay (33) 4. THE SEMI-IMPLICIT ALGORITHM 

will be used in the calculations. 
The static stability and some additional terms appear- 

ing in the meteorological equations will be defined as 
follows: 

The follo~ving finite-diff erence approximations  ill be 
used for the time integration: 

(48) 
F(r  + 1)- F(r-  1) 

F,= 0 
f5 

(34) and 
(49) 

-7  F =  F( T+ 1) + F( r - 1) 
2 

and these operators will be applied as follows: 
(35) 

ap‘ ur +ax =r1 , 
8’=8--8*, (37) 

Y‘ =Y-Y*, (38) 

(39) 

and 

T&) + r* W‘= r3, 

The variable 0 taken from the hydrostatic approximation 
[eq (31)] is substituted into the time derivative and the 
horizontal advection term of the thermodynamic equation 
[eq (28)]. Then the geopotential, e, tarken from eq (32) is 
substituted into eq (26) and (27) and where it appears 
explicitly in eq (28). Also, the variable w taken from eq 
(33) is substituted in eq (28) and (30). Finally, by applying 
eq (32) at the lower boundary, we may express p , i n t erms 
of P,  and as and substitute in eq (29). These modifications 
are tedious but do not involve any serious difficulties. The 

and 

(54) 

These equations may now be transformed into the 
following : 

P or+ -= p1, ax (55) 
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and 

where 

and 
C,=P,(7-1). (62) FIQURE 1.-The distribution of levels in the model. The wind and 

the geopotential are given a t  the odd levels. Temperature and 

We will now use eq (55) and (56) to eliminate the vertical motion appear at the even levels. 

divergence from eq (54) giving 

(63) and 
where -7 As - r  

m P 8 - T  w 8= c,. 

In  the above equations, the subscripts represent the 
level at  which the variable is taken as indicated in figure 1 , 
and level six represents the lower boundary also repre- 
sented by the subscript s. Also, 

The integration procedure will consist of evaluating 
A, B, r l ,  r,, r3,  and then ql,  p2, C, and D .  At this point, 
we still ha,ve to  solve eq (57), (58), and (63) 
for the two unknown variables contained in these 
equations. A = m2y* 

A8=m2e. 

(71) 

(72) 
and 

5. THE VERTICAL REPRESENTATION 
If we eliminate the variable W from the above set of 

equations, we get 
In  the current version of the model, it is possible to  

perform integrations with as many as seven levels and the 
allowable maximum number of levels will soon be in- 
creased to  15. All the tests reported in the following 
sections were performed with five levels. To keep the 
description of the vertical representation as short as 
pdssible, we will consider a three-level version as shown 
in figure 1. The generalization to  an arbitrary number of 
levels mill not present any difficulties. 

As me can see from figure 1, the variables P and W 
are staggered with respect to each other. If we apply 
eq (57), (58), and (63) to their respective levels, we get 
the following set of equations: 

(73) 

and 

(75) 

1 -7 V2FI--  W 2 = - D l ,  
m2 G - - D  --+-i c4 c2 

A4 A2 
3- 3 (77) 

and -7 -7 A -7 

P, -P3- -4  w,=c2, m 

1 V2pi+ - m2 ( ~ ~ - - ~ ~ )  = - D3, (67) We find that eq(73)-(75) may be written as a single 
differential equation in three dimensions; that is, 

v2F7+- a (- i a F  -)=G, 
az xaz (79) 

(69) and, given G, we must solve for with the boundary con- 
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ditions 
aF' 
az PO 
_- 

at the top boundary and 

aP' P' 
az- x _-__ 

at the lower boundary. At the lateral boundaries, we will 
use the condition used by Shuman and Hovermale (1968) 
that the gradient of the geopotential normal to  the bound- 
ary is in geostrophic equilibrium with the tangential 
flow. In  terms of the variable P, this condition appears as 

e' ap - = ( f A t ) V T - -  2 
a 7  
i3n Ps 

where an is normal to  the boundary measured positive out- 
ward, and VT is the tangential flow measured counter- 
clockwise around the grid. 

The differential equation given in eq (79) is now in 
its general form and may be applied to as many levels 
as me wish, provided that we apply the given conditions 
at the boundaries. This is a second-order elliptic differ- 
ential equation in three dimensions. It may be solved by 
Liebmann relaxation (Thompson 1961, p. 96) or any 
other iterative procedure. The coefficient of relaxation 
will depend on the number of levels used in the model 
and on the variable A .  An optimum coefficient of relaxa- 
tion is obtained by evaluating the convergence rates 
for different values. This method seems adequate, and, 
in the five-level model used at  present, a sufficiently 
accurate solution is obtained with 14 iterations. 

Once that eq (79) has been solved for p, the final 
steps of the forecast cycle proceed as follows: 

(84) 

U( 7 + 1) = 2 r -  U( 7 - 1 ), (85) 

V( 7 + 1.) = 2T7- V( 7 - 1) , (86) 
and 

6. TIME INTEGRATIONS 

The three preceding sections describe the formulation 
of the semi-implicit integration without giving any 
justification for this particular formulation. It is neces- 
sary at  this point to  add a few comments about the choice 
that was made. In  each of eq (50)-(54), we could drop 
the terms appearing on the right-hand side. We would 

then have a system that woiild be valid for infinitesimally 
weak gravity waves in a stratified fluid at rest on a non- 
rotating sphere. Because this motion is given a fully 
implicit treatment, the time integration would then 
remain stable for time steps of any size. 

If we treat explicitly the additional terms required when 
we wish to consider intense perturbations in a translating 
fluid on a rotating sphere, then there will be an upper 
limit to the size of the time step that can be used for the 
numerical integration. Linear analysis performed by 
Kwizak and Robert (1971) indicated that, for the condi- 
tions encountered in the atmosphere, the size of the time 
step would be restricted only by the short Rossby waves. 
Because this analysis does not apply to nonlinear equa- 
tions and because it leaves some doubt even for linear 
equations, it seems advisable to  test the scheme by 
performing some numerical integrations. 

The constant pressure charts for 0000 GMT on Feb. 21, 
1969, will be used for this experiment. Runs will be made 
with five a-levels roughly equivalent to  100, 300, 500, 
700, and 900 mb. The tests will be performed without any 
topography, surface friction, or other physical process. The 
model does not even include the vertical advection term in 
the wind equation, and a uniform value is used for the 
static stability at each level. These constraints are not 
intentional;. they appear because these terms had not 
yet been incorporated in the model when the experiments 
were performed. Because the model is still incomplete, we 
must be careful in the interpretation of the results. The 
initialization will be carried out by the method suggested 
by Kwizak and Robert, (1971). This scheme starts from 
analyses of the nondivergent part of the wind. The geo- 
potential is generated from the nonlinear balance equation. 
The finite-diff erence approximations applied to  the balance 
equation are identical to those used in the model. There is 
no divergence at initial time, and the initialization pro- 
cedure does not allow any generation of divergence in the 
first time step. The rapid oscillations subsequently ap- 
pearing during the time integrations have amplitudes of 
the order of a few meters. 

A 5-day prediction of the 500-mb geopotential prepared 
with a 60-min time step is presented in figure 2. A similar 
prediction prepared with a 30-min step is also presented in 
figure 3. Visually, it  is difficult to  see the differences be- 
tween the two predictions. To evaluate more objectively 
the dependence of the predictions on the size of the time 
step, we will evaluate the root-mean-square difference over 
the 51 X 55 grid every 6 hr for each level. The resulting 
curves are given in figure 4. 

For the three lowest levels of the model, the curves 
differ by less than 0.3 m. They are so close to  each other 
that it was not possible to  include all of them in figure 4. 
For this reason, the curves for 700 and 900 mb arenot 
shown in the figure. These errors grow to 3.5 m in 5 days. 
The rapid jump up to 2 m at the very beginning of the 
integration is probably due to the presence of weak 
gravity waves. Because of the weak vertical coupling in 
the model, the perturbations in the two upper levels 
move much too rapidly, and larger time truncation errors 
are associated with these translations. 
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FIGURE 4.-Root-mean-square differences as a function of time 

between an integration with a 60-min time step and another 
integration with a 30-min step. The curves are for the loo-, 
300-, and 500-mb levels. 

TABLE 1.-Root-mean-square error [ R M S E  (m)] and S1 scores for 
96-hr predictions of the 600-mb geopotential ouer North America 
using the implicit and Canadian operational $filtered models. All 
predictions were prepared from the 0000 QMT analyses, one for each 
of the first 8 mo of 1971. The dates were selected at random. FIGURE 2.-Five-day prediction of the 500-mb geopotential pre- 

pared with a 60-min time step. 
Implicit Filtered 

RMSE s1 RMSE s1 
Date 

Jan. 14,1971 
Feb. 5, 1971 
Mar. 26, 1971 
Apr. 22, 1971 
May 4, 1971 
June 19, 1971 
July 2, 1971 
Aug. 21, 1971 

112.9 
81. 0 
86. 8 
50. 7 
63. 7 
39. 0 
33. 0 
48. 2 

71 116. 7 
47 71. 5 
71 71. 6 
55 52. 2 
59 67. 6 
56 36. 8 
52 26. 9 
57 53. 1 

68 
49 
72 
56 
62 
55 
51 
61 

satisfies the accuracy requirements for short-range 
weather forecasting. We still need to test this algorithm 
in the presence of physical processes before we can draw 
a final conclusion. These experiments will be performed as 
soon as possible. 

The model has also been used to prepare some short- 
range forecasts. The integrations were performed with 
five levels and a time step of 1 hr. For these runs, the 
vertical advection terms and the variable static stability 
were available and were included in the integrations. 
A set of eight 36-hr forecasts was prepared and the 
verification scores are given in table 1. For comparison, 
the scores of the operational Canadian baroclinic model 
are also given. This is a four-level filtered model that - 

includes topography, surface friction, internal viscosity, 
diabatic heating, and precipitation. 

The root-mean-square error in the 500-mb geopoten- 

FIGURE 3.-Five-day prediction of the 500-mb geopotential pre- 
pared with a 30-min time step. 

tial is given for both models. The 500-mb S1 scores used 
by Shuman and Hovermale (1968) are also presented. The 
verification is performed over an area covering North 
America and a small portion of the adjacent oceans. For 
both schemes, a low value represents a good forecast. Even 

The truncation errors associated with the time dif- 
ferences are so small that there seems to be no point in 
determining their nature or searching for possible causes. 
At this’ stage, the semi-implicit leapfrog scheme clearly 
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without inclusion of any physical processes, we find that 
the semi-implicit model compares favorably with the fil- 
tered baroclinic model. These results are very encouraging 
since we can hope to  get an acltlitional improvement of the 
order of 7 m with the inclusion of the physical effects as they 
appear in the filtered model. 

7. CONCLUSIONS 

Experiments with a semi-implicit time integration al- 
gorithm applied to a baroclinic model of the primitive 
equations give very good results. Further tests of the per- 
formance of this scheme in the presence of physical proc- 
esses will have to be conducted before we can draw a 
final conclusion. These experiments will have to  be con- 
sidered in the near future. 

Compared to the explicit leapfrog scheme, each time 
step presently requires about 50 percent more computa- 
tions; and with more efficient iterative procedures, it may 
be possible to reduce this figure to 20 percent. The inclu- 
sion of physical processes will also reduce this figure be- 
cause these effects add computations only in the explicit 
part of the time step. 

With a time interval six times larger in the semi-implicit 
model, the economy realized amounts roughly to a factor 
of four. This feature should appeal to most modelers. The 
fully implicit algorithms developed in the U.S.S.R. might 
provide us with an additional advantage, especially when 
we start using fine-mesh weather forecast models. Further 
experimentation with implicit methods should yield a 
considerable amount of information about the possibility 
of using these algorithms in weather forecast models or 
general circulation models. 
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